The K-periodic Fibonacci Sequence and an Extended Binet’s Formula
نویسندگان
چکیده
It is well-known that a continued fraction is periodic if and only if it is the representation of a quadratic irrational α. In this paper, we consider the family of sequences obtained from the recurrence relation generated by the numerators of the convergents of these numbers α. These sequences are generalizations of most of the Fibonacci-like sequences, such as the Fibonacci sequence itself, r-Fibonacci sequences, and the Pell sequence, to name a few. We show that these sequences satisfy a linear recurrence relation when considered modulo k, even though the sequences themselves do not. We then employ this recurrence relation to determine the generating functions and Binet-like formulas. We end by discussing the convergence of the ratios of the terms of these sequences.
منابع مشابه
A New Generalization of Fibonacci Sequence and Extended Binet’s Formula
Consider the Fibonacci sequence {Fn}n=0 with initial conditions F0 = 0, F1 = 1 and recurrence relation Fn = Fn−1 + Fn−2 (n ≥ 2). The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this article, we study a new generalization {qn}, with initial conditions q0 = 0 and q1 = 1, which is generated by...
متن کاملA New Generalization of Fibonacci Sequence & Extended Binet’s Formula
Consider the Fibonacci sequence {Fn}n=0 having initial conditions F0 = 0, F1 = 1 and recurrence relation Fn = Fn−1 + Fn−2 (n ≥ 2). The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this article, we study a new generalization {qn}, with initial conditions q0 = 0 and q1 = 1 which is generated b...
متن کاملGeneralized Binet Formulas, Lucas Polynomials, and Cyclic Constants
Generalizations of Binet’s theorem are used to produce generalized Pell sequences from two families of silver means. These Pell sequences are also generated from the family of Fibonacci polynomials. A family of Pell-Lucas sequences are also generated from the family of Lucas polynomials and from another generalization of Binet’s formula. A periodic set of cyclic constants are generated from the...
متن کاملOn the properties of generalized Fibonacci like polynomials
The Fibonacci polynomial has been generalized in many ways,some by preserving the initial conditions,and others by preserving the recurrence relation.In this article,we study new generalization {Mn}(x ), with initial conditions M0(x ) = 2 and M1(x ) = m (x ) + k (x ), which is generated by the recurrence relation Mn+1(x ) = k (x )Mn (x )+Mn−1(x ) for n ≥ 2, where k (x ), m (x ) are polynomials ...
متن کاملSome Properties of Extended Remainder of Binet’s First Formula for Logarithm of Gamma Function
In the paper, Binet’s first formula for the logarithm of the gamma function is extended, inequalities and star-shaped and sub-additive properties of the extended remainder of Binet’s first formula for the logarithm of the gamma function are presented, and completely monotonic properties of the difference between extended remainders of Binet’s first formula for the logarithm of the gamma functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011